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Introduction

In the previous chapters, we considered discrete stochastic
processes.

Here, we consider continuous-time processes with continuous
sample paths.

The main example of such processes is the Brownian motion.
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Brownian motion

A Brownian motion B = {Bt ; t ≥ 0} starting at B0 = b is a
process such that

1 B has independent increments
2 Bt+h − Bt follows a Normal distribution N(0, σ2h)

3 the sample paths of B are continuous.
The process B is called standard Brownian motion if σ2 = 1 and
B0 = 0. It is often denoted by W and is also called Wiener process.



5/45

Brownian motion Itô integral Diffusion processes Black-Scholes Equity-linked life insurance Merton model

Distribution of increments

The increments of a Brownian motion are stationary as the
distribution of Bt+h − Bt only depends on h.

Conditionally on Bs = x , we have that Bt follows a Normal
distribution N(x , t − s), that is, F (t, y , s, x) = P[Bt ≤ y | Bs = x ]
has a density function

f (t, y , s, x) = ∂F (t,y ,s,x)
∂y = 1√

2π(t−s)
exp(−1

2
(y−x)2
t−s ).
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Forward and backward equations

The transition density f satisfies the following partial differential
equations:

forward equation: ∂f
∂t = 1

2
∂2f
∂y2

backward equation: ∂f
∂s = 1

2
∂2f
∂x2

The forward equation is obtained by fixing Bs = x , whereas the
backward equation is obtained by fixing Bt = y .
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First passage time

The first passage time T (x) of the standard Brownian motion at
point x is defined by T (x) = inf{t : Bt = x} (the requirement of
continuous sample paths is obvious for the definition to make
sense).

The random variable T (x) has a density function
f (t) = |x |√

2πt3
exp

(
− x2

2t

)
, t ≥ 0.
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Distribution of the maximum

We can also characterize the density of the maximum
mt = max{Bs ; 0 ≤ s ≤ t}.

We note that T (m) ≤ t ⇐⇒ mt ≥ m. We could prove that the
random variable mt has a density function

f (m) =
√

2
πt exp

(
−m2

2t

)
, m ≥ 0.

The sample paths of the Brownian motion satisfy the principles of
translation and reflection.
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Example: Bachelier’s application

One of the first applications of the Brownian motion was proposed
by Bachelier (1900). Bachelier used the Brownian motion to
describe the evolution of prices on Paris stock exchange.

Bachelier assumed that the infinitesimal price increments dXt of a
financial asset are proportional to the increments dBt of a standard
Brownian motion, that is, dXt = σdBt .

Starting at an initial value X0 = x , the value of the process at time
t is Xt = x + σBt .
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Example: Bachelier’s application (cont’d)

A major drawback of this specification is that the price has a non
zero probability of getting negative.

In order to solve this issue, we rather model the relative increments
with respect to the prices (returns) as a standard Brownian motion,
that is, dXt

Xt
= σdBt or equivalently dXt = σXtdBt .

The second expression looks like a differential equation. However,
there are two difficulties:

1 the variables in the equation are stochastic
2 the sample paths of Bt are not differentiable even though they

are continuous.
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Example: Bachelier’s application (cont’d)

The mathematical solution to this problem was found by Itô in the
40’s using a new kind of integral: the stochastic integral.

In particular, it allows to write Xt = x + σ
∫ t
0 XsdBs where we

integrate with respect to the random element B .
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Stochastic Itô integral

The stochastic integral is built in a similar way as the Riemann
integral. The integral is first defined on a class of piecewise
constant processes and is then extended to a larger class by
approximation.

There are nonetheless two major differences between Riemann and
Itô integrals. The first one is the convergence type: the Riemann
integral converges in R whereas the Itô integral is approximated by
sequences of random variables that converge in L2, the space of
square-integrable random variables (finite variance).
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Stochastic Itô integral (cont’d)

The second difference is the following. Riemann sums approaching
the integral of a function f : [0,T ]→ R have the form∑n−1

j=0 f (sj)(tj+1 − tj) with 0 = t0 < t1 < · · · < tn = T and sj an
arbitrary point in [tj , tj+1] for all j .
The value of the Riemann integral does not depend on the points
sj ∈ [tj , tj+1].

In a stochastic context, the sums have the form
I (fn) =

∑n−1
j=0 f (sj)(Wtj+1 −Wtj ).

The limit of such approximations does depend on the choice of
intermediary points sj ∈ [tj , tj+1]. In order to solve the ambiguity,
we take sj = tj for all j . As we choose the left point of the interval,
the approximations at a particular date only depend on the
information known at this date, and not on future events.
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Stochastic Itô integral (cont’d)

Itô’s integral is denoted by
∫∞
0 f (s)dWs and is defined such that

limn→∞ E [|
∫∞
0 f (s)dWs − I (fn) |] = 0.

The stochastic integral has the following properties:
1 linearity:∫ t

0 (αf (u) + βg(u))dWu = α
∫ t
0 f (u)dWu + β

∫ t
0 g(u)dWu

2 isometry: E
[
|
∫ t
0 f (u)dWu |2

]
= E

[∫ t
0 | f (u) |2 du

]
3 martingale property: E

[∫ t
0 f (u)dWu|Fs

]
=
∫ s
0 f (u)dWu

The stochastic integral is the core building block of the definition of
diffusion processes.
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Diffusion processes

The stochastic integral allows us to define integral equations of the
form Xt = X0 +

∫ t
0 µ(s,Xs)ds +

∫ t
0 σ(s,Xs)dWs whose solution is

called diffusion process.
We often write this equation in a compact differential form
dXt = µ(t,Xt)dt + σ(t,Xt)dWt called stochastic differential
equation.

The term µ(t,Xt) is called drift
The term σ(t,Xt) is called volatility (or diffusion factor) and
corresponds to the instantaneous standard deviation.
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Applications in finance

The geometric Brownian motion is used in Black-Scholes
(1975) to model the evolution of stock prices:
dSt = mStdt + σStdWt

The Ornstein-Uhlenbeck process is used in Vasicek (1979) to
model the evolution of the short rate rt :
drt = b(a− rt)dt + sdWt

The square root process is used in Cox-Ingersoll-Ross (1985)
to model the evolution of the short rate rt :
drt = b(a− rt)dt + s

√
rtdWt
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Euler discretization

The Euler discretization
Xt+h − Xt = µ(t,Xt)h + σ(t,Xt)

√
hεt+h, εt+h ∼ N(0, 1)

corresponds to the discretization of
dXt = µ(t,Xt)dt + σ(t,Xt)dWt with a time step of size h.

It can be used to simulate approximate sample paths of the process
by taking h small enough.
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Itô’s lemma

Let Xt be a diffusion process such that
Xt = X0 +

∫ t
0 µ(s,Xs)ds +

∫ t
0 σ(s,Xs)dWs , or equivalently

dXt = µ(t,Xt)dt + σ(t,Xt)dWt .

We aim at characterizing the evolution of Yt = f (t,Xt) through its
stochastic differential equation. In standard calculus, we would use
the total differential or chain rule dYt = ∂f (t,Xt)

∂t dt + ∂f (t,Xt)
∂X dXt .

In stochastic calculus, we get an additional term
1
2
∂2f (t,Xt)
∂X 2 σ2(t,Xt)dt in comparison to the usual rule.
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Itô’s lemma (cont’d)

Itô’s lemma gives the following relationship for Yt = f (t,Xt):

dYt = ∂f (t,Xt)
∂t dt + 1

2
∂2f (t,Xt)
∂X 2 σ2(t,Xt)dt + ∂f (t,Xt)

∂X dXt .

Replacing dXt by its definition:

dYt =
[
∂f (t,Xt)

∂t + ∂f (t,Xt)
∂X µ(t,Xt) + 1

2
∂2f (t,Xt)
∂X 2 σ2(t,Xt)

]
dt +

∂f (t,Xt)
∂X σ(t,Xt)dWt .

The additional factor is a second-order factor that is not negligible
in comparison to first-order factors and is due to fast oscillations of
the sample path of the process.
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Itô’s lemma (cont’d)

Itô’s formula ressembles a second-order Taylor expansion of f (t,Xt)
where

we replace dXt by its expression
we apply the following rules: (dt)2 = 0, dtdWt = 0,
(dWt)

2 = dt.
In compact form, we get:
dY = df

= f
′
t dt + f

′
XdX +

1
2

(
f
′′
tt (dt)2 + 2f

′′
XtdXdt + f

′′
XX (dX )2

)
= f

′
t dt + f

′
X (µdt + σdW ) +

1
2

(
f
′′
XXσ

2dt
)

=

(
f
′
t + f

′
Xµ+

1
2
f
′′
XXσ

2
)
dt + σf

′
XdW



21/45

Brownian motion Itô integral Diffusion processes Black-Scholes Equity-linked life insurance Merton model

Multidimensional Itô’s lemma

Let X = (X 1,X 2, ...X d)′ be a d-dimensional diffusion process:

dXt = µtdt + σtdBt

with µ = (d × 1) vector, σ = (d × k) matrix, and
B = (B1,B2, ...Bk)′ = (k × 1) vector is a k-dimensional Brownian
motion. Take dYt = df (t,Xt), then

dYt =

(
ft(t,Xt) + fx(t,Xt)µt +

1
2
tr(σtσ

′
t fxx(t,Xt))

)
dt

+fx(t,Xt)σtdBt

with ft =
∂f

∂t
, fx = row vector with partial derivatives

∂f

∂xi
, and

fxx = matrix with second partial derivatives
∂2f

∂xi∂xj
.
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Multidimensional Itô’s lemma (cont’d)

More concise form:

dYt = Lf (t,Xt)dt + fx(t,Xt)σtdBt

L is called the infinitesimal or the Dynkin’s generator.

Lf (t,Xt) = ft(t,Xt) + fx(t,Xt)µt +
1
2
tr(σtσ

′
t fxx(t,Xt))

Other rule:

dYt = ft(t,Xt)dt +
∑
i

fxi (t,Xt)dX
i
t +

1
2

∑
i ,j

fxi ,xjdX
i
t dX

j
t

and product dX i
t dX

j
t computed with the conventions dtdt = 0,

dtdB i
t = 0, dB i

tdB
i
t = dt and dB i

tdB
j
t = 0 if i 6= j .
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Integration by parts (example)

Let {
dX 1

t = µ1
tdt + σ1

t dBt

dX 2
t = µ2

tdt + σ2
t dBt

Show the integration by parts rule∫ t

0
X 1
s dX

2
s = X 1

t X
2
t − X 1

0X
2
0 −

∫ t

0
X 2
s dX

1
s −

∫ t

0
σ1
s σ

2
s ds

and note that it differs from standard differentiation rule
d(uv) = du v + u dv and standard integration by parts rule
uv =

∫
du v +

∫
u dv .
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Integration by parts (example)

Take Yt = X 1
t X

2
t and apply Itô’s lemma with f = x1x2.

Hence: ft = 0, fx = (x2, x1)′, fxx =

(
0 1
1 0

)
.

Since d = 2 and k = 1, we get σt = (σ1
t , σ

2
t )′ which gives the

(2× 2) matrix σtσ′t =

(
(σ1

t )2 σ1
t σ

2
t

σ1
t σ

2
t (σ2

t )2

)

Hence: σtσ′t fxx =

(
σ1
t σ

2
t (σ1

t )2

(σ2
t )2 σ1

t σ
2
t

)
and tr(σtσ

′
t fxx) = 2σ1

t σ
2
t and

we get dYt = (X 2
t µ

1
t + X 1

t µ
2
t + σ1

t σ
2
t )dt + (X 2

t σ
1
t + X 1

t σ
2
t )dBt

or d(X 1
t X

2
t ) = X 2

t dX
1
t + X 1

t dX
2
t + σ1

t σ
2
t dt Q.E.D.
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Black-Scholes model

The Black-Scholes formula is a European option valuation formula.

The Black-Scholes model considers an economy with two asset
classes:

a riskless asset, T-bill or zero coupon bond
a risky asset, stock

The value of the riskless asset Mt grows at a continuously
compounded constant interest rate r and is normalized such that
M0 = 1, that is, dMt = rMtdt with solution Mt = ert .
The value of the risky asset St follows a geometric Brownian
motion, that is, dSt = mStdt + sStdWt with solution
St = S0 exp

(
(m − 1

2s
2)t + sWt

)
.
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Portfolio

Let F = {Ft ; t ≥ 0} be the filtration generated by the observation
of the price history, Ft = {Su; 0 ≤ u ≤ t}.
A portfolio is a pair α = {αt ; t ≥ 0} and β = {βt ; t ≥ 0} of
F -adapted random processes. The pair (α, β) is a time-dependent
portfolio containing αt units of stock and βt units of bond.

The value of the (α, β) portfolio at time t is given by the value
function Vt = αtSt + βtMt .
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Valuation by replication

The portfolio is said to be self-financing if dVt = αtdSt + βtdMt .
It means that the changes in the value of the portfolio are only due
to variations of the prices: there is no addition or withdrawal of
funds.

The self-financing portfolio (α, β) replicates the payoff function of
a European call option if its value is equal to the value of the call
at maturity, that is, VT = (ST − K )+.
By absence of arbitrage (AOA), we then have that the replicating
portfolio value must be equal to the call price.
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Valuation by replication (cont’d)

Let us consider the value function Vt of the portfolio as a function
of time and the stock price
Vt = V (t,St) = α(t,St)St + β(t,St)e

rt .
Using Itô’s lemma, we get
dVt = ∂V (t,St)

∂S dSt +
[
∂V (t,St)

∂t + 1
2s

2S2
t
∂2V (t,St)
∂S2

]
dt.

Also, the self-financing condition gives
dVt = α(t,St)dSt + β(t,St)re

rtdt.
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Valuation by replication (cont’d)

By identification of the factors of dSt and the factors of dt and
using the self-financing constraint, we get that

∂V (t,St)

∂S
= α(t, St)[

∂V (t,St)

∂t
+

1
2
s2S2

t

∂2V (t, St)

∂S2

]
= β(t, St)re

rt .

Multiplying the first equation by rSt and adding it to the second
equation, we obtain[
∂V (t,St)

∂t
+

1
2
s2S2

t

∂2V (t, St)

∂S2

]
+
∂V (t,St)

∂S
rSt

= α(t,St)rSt + β(t, St)re
rt

.

which, by using α(t,St)rSt + β(t, St)re
rt = rV (t,St), leads to the

the pricing equation
∂V (t, St)

∂t
+

1
2
s2S2

t

∂2V (t,St)

∂S2 +
∂V (t,St)

∂S
rSt − rV (t,St) = 0 .
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Black-Scholes formula

We get the Black-Scholes formula by solving this parabolic
differential equation, using the payoff function of the option as a
terminal condition V (T ,ST ) = (ST − K )+:
V (t,St) = StΦ (d1(T − t, St))− Ke−r(T−t)Φ (d2(T − t, St))

d1(T − t, St) =
ln(St/K ) +

(
r + 1

2s
2) (T − t)

s
√
T − t

d2(T − t, St) = d1(T − t,St)− s
√
T − t

where Φ(x) is cdf of the standard normal distribution.
Depending on the derivative product and the assumptions, it is not
always as easy to determine an explicit solution, however.
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Volatility estimation

The formula depends on the volatility s of the stock returns that
we estimate

either using historical returns (historical volatility)
or using option prices and the inverse Black-Scholes formula
(implied volatility).
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Equity-linked life insurance

Concepts used in the Black-Scholes model can be applied to life
insurance models.

For usual life insurance contracts, a so-called technical interest is
paid.

Insurance companies usually invest part of their reserves in financial
markets.

The expected return is higher than the riskless rate but there is an
additional risk.

Equity-linked life insurances transfer part of this risk to the owner
of the policy.
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Equity-linked life insurance (cont’d)

The interest rate is higher than for a standard contract, but it is
random.

Suppose that the payoff function of the life insurance depends on a
reference index (e.g., the price of a financial asset, portfolio, or
market index).

We consider here a contract paying the maximum between some
index value and a guaranteed amount b. This approach reduces the
risk for the insurer.
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Equity-linked life insurance (cont’d)

Let the index value Xt follow a geometric Brownian motion
dXt = mXtdt + sXtdWt .

The payment takes place at a random time T that is triggered if
the insured dies (or in case of any other event defined in the
contract such as a job loss, a divorce, a wedding).

The payoff at time T is max(XT , b) = XT ∨ b.
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Types of life insurances

We consider two types of contracts based on a fixed maturity t0:
Term insurance, for which the value XT ∨ b is paid at the time
of death T ∈ [0, t0].
Pure endowment insurance, for which the value Xt0 ∨ b is paid
if the insured is still alive at time t0.

In general, we combine the two types of life insurances, possibly
with different amounts b.
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Model

Suppose that T = Ta corresponds to the remaining lifetime of an
a-years old insured and that it is independent of the index value X .

The probability that the insured does not die in the t years to come
is given by 1− FTa(t) = P[Ta > t].

Also, FTa(t) = P[Ta < t] gives the probability that the insured dies
during the t years to come.

The density of Ta at u is denoted by fTa(u).
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Model (cont’d)

The distribution of Ta depends on the age, the gender, the country,
the health, etc.

There are thus two sources of risk in an equity-linked life insurance:
the financial risk due to the evolution of the index
the mortality risk of the insured.

These two sources are modelled with X and Ta and have an impact
on the insurance payoff.
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Model (cont’d)

Note that the payoff function XTa ∨ b can be rewritten as
b + max(XTa − b, 0), which is equivalent to the payment of a fixed
amount b plus a payment max(XTa − b, 0).

For a fixed Ta, we can use the Black-Scholes formula to value a
payoff max(XTa − b, 0) as it is equivalent to a European call with
maturity Ta on the index X and with strike price b.
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Model (cont’d)

For a maturity Ta = u, the price today is
C (u,X0) = X0Φ (d1(u,X0))− be−ruΦ (d2(u,X0))

d1(u,X0) =
ln(X/b) +

(
r + 1

2s
2) u

s
√
u

d2(u,X0) = d1(u,X0)− s
√
u

where Φ(x) is cdf of the standard normal distribution.

In order to compute the insurance premium, we finally weight these
prices according to the probability of each possible maturity.
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Premium of pure endowment insurance

The payoff of the pure endowment insurance is given by Xt0 ∨ b at
time t0 if the insured is still alive.

The probability to be alive at time t0 is given by
P[Ta > t0] = 1− FTa(t0).

The premium today is denoted by Πe
0 and is given by the price

today of the unique random payoff at time t0, that is, the sum of
the discounted fixed amount b and the call price be−rt0 + C (t0,X0)
multiplied by the survival probability 1− FTa(t0):
Πe

0 = (be−rt0 + C (t0,X0)) (1− FTa(t0)).
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Premium of term insurance

For the term insurance, the payoff may happen at any time between
[0, t0] if the insured dies.

If we knew that the death would happen at time Ta = u, the value
today of the security would be be−ru + C (u,X0).

The premium today is denoted by Πt
0 and is given by the sum of

these values weighted by the density fTa(u) on all possible dates u
between 0 and t0:
Πe

0 =
∫ t0
0 (be−ru + C (u,X0)) fTa(u)du.
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Merton’s intertemporal model

Merton’s intertemporal model considers a problem of optimal
consumption and portfolio allocation in continuous time.

We aim at maximizing an expected utility by optimizing
consumption and investment across time, and having an initial
wealth w .

We suppose that there are N financial assets, whose prices are
defined by
dS i

t = miS
i
tdt + siS

i
t

∑d
j=1 dW

j
t .

The evolution of each financial asset depends on d sources of noise
W j

t , j = 1, . . . , d .
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Merton’s intertemporal model (cont’d)

We define the price of the riskless asset by dMt = rMtdt with
M0 = 1.

We may invest in N risky assets and a riskless asset, which gives
the multidimensional price process X = (M, S1, . . . ,SN).

Let ct be the consumption level at time t and Z the final wealth.
We aim at maximizing
U(c ,Z ) = E

[∫ t
0 u(ct , t)dt + F (Z )

]
,

where u and F stand for the utility of consumption and final
wealth, respectively.
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Merton’s intertemporal model (cont’d)

We use financial assets to transfer wealth from one date to the
other and to finance future consumption.

An investment strategy is given by the process θ = (θ0, θ1, . . . , θN).
Such a strategy is said to finance the consumption plan
c = {ct ; t ∈ [0,T ]} and the final wealth Z if it satisfies∑N

i=1 θ
i
tS

i
t = w +

∫ t
0
∑N

i=1 θ
i
sdS

i
s −

∫ t
0 csds ≥ 0 for t ∈ [0,T ] and∑N

i=1 θ
i
TS

i
T = Z .

For some initial wealth w , we determine the optimal c , z and θ.
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Merton’s intertemporal model(cont’d)

We may obtain explicit solutions for some particular utility
functions (for inst. u(w) = wα/α) using stochastic optimal control
techniques.

Those kind of models are used in pension funds where we invest the
received premia in financial assets in order to finance future
retirement.
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