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Definition

A sequence Y = {Yt ; t ≥ 0} is a (discrete) martingale with
respect to the sequence X = {Xt ; t ≥ 0} if for all t ≥ 0

1 E | Yt |<∞
2 E [Yt+1|X0,X1, . . . ,Xt ] = Yt
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Example: simple random walk

Simple random walk: particle jumps to the right (+1) with a
probability p, and to the left (−1) with a probability q = 1− p.

1 The location of the particle after t jumps satisfies E | St |≤ t.
2 E [St+1|X1,X2, . . . ,Xt ] = E [X1 + · · ·+ Xt |X1,X2, . . . ,Xt ] +

E [Xt+1|X1,X2, . . . ,Xt ] = St + (p − q)

We deduce that Yt = St − t(p − q) defines a martingale with
respect to X . Indeed,
E [Yt+1|X1,X2, . . . ,Xt ] = E [St+1− (t +1)(p−q)|X1,X2, . . . ,Xt ] =
St + (p − q)− (t + 1)(p − q) = Yt
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Example: roulette strategy

Let a gambler with a large amount of money plays the roulette
game. He chooses the following strategy.

He bets CHF 1 on red. If he loses, he bets an additional CHF 2 on
red, doubling his initial investment. He goes on doubling the size of
the gamble as long as he loses.

Thus, if he loses for t consecutive bets, he bets 2t on red for the
(t + 1)th round.

This strategy always wins at some point in time. Indeed, if he wins
the (T + 1)th round, he gets 2T − (1 + 2 + 22 + · · ·+ 2T−1).
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Example: roulette strategy (cont’d)

The cumulative gain process Yt (sum of all bets) of this strategy is
a martingale:

if the gambler stops at time t + 1 (red comes for the first
time), we have Yt+1 = Yt

if the gambler goes on gambling, we have

Yt+1 =

{
Yt − 2t with probability 1

2

Yt + 2t with probability 1
2

which gives

E [Yt+1|Y1,Y2, . . . ,Yt ] = Yt .
The strategy is thus a martingale for the gain with respect to itself.
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Example: roulette strategy (cont’d)

Even though the gambler is sure to win at some point in time, his
expected loss is infinite.

Let T be a random variable indicating the time of the first win.
This random variable has a probability mass function
P[T = t] =

(1
2

)t , and we have limt→∞ P[T = t] = 0 as expected
(the gambler wins for sure).

Until this date however, the gambler loses an amount L, whose
expected value is given by
E [L] =

∑∞
t=1
(1

2

)t
(1 + 2 + 22 + · · ·+ 2t−2) =∞.

Therefore, the gambler loses an infinite amount of money on
average, and he can expect the strategy to be beneficial only if his
initial capital is extremely large. Additionally, casinos forbid such
practices by imposing a maximum size of bets, which prevents any
gambler to implement the strategy.
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Example: De Moivre’s martingale

The martingale characterization helps to solve the following
question related to a player ruin.

We consider a simple random walk on {0, 1, . . . ,N} that stops
when it reaches absorbing barriers at 0 or N.

The question is to determine the probability of being absorbed at 0.
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Example: De Moivre’s martingale (cont’d)

Let X1,X2, . . . be the jumps of the random walk, with
p = P[Xt = 1] and q = 1− p = P[Xt = −1].

We denote by St the position after t jumps (the wealth after t

jumps), with S0 = k . We define Yt =
(
q
p

)St
and have

E [Yt+1|X1,X2, . . . ,Xt ] = E [

(
q

p

)St+Xt+1

|X1,X2, . . . ,Xt ]

=

(
q

p

)St

E [

(
q

p

)Xt+1

|X1,X2, . . . ,Xt ]

=

(
q

p

)St
[
p

(
q

p

)1

+ q

(
q

p

)−1
]

=

(
q

p

)St

= Yt

Yt =
(
q
p

)St
is thus a martingale.
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Example: De Moivre’s martingale (cont’d)

Using iterated expectations, we have
E [Yt ] = E [E [Yt |X1,X2, . . . ,Xt−1]]

= E [Yt−1] = E [E [Yt−1|X1,X2, . . . ,Xt−2]]

= E [Yt−2] = · · · = E [Y0] = Y0 =

(
q

p

)S0

=

(
q

p

)k

The relationship E [Yt ] = Y0 =
(
q
p

)k
holds for any t. In particular,

if we denote the number of jumps until absorption (either at 0 or at

N) by T and suppose that T <∞, we have E [YT ] =
(
q
p

)k
.
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Example: De Moivre’s martingale (cont’d)

This expectation also gives E [YT ] = E [
(
q
p

)ST
] =

P[absorbed at 0]
(
q
p

)0
+ P[absorbed at N]

(
q
p

)N
with

P[absorbed at 0] = 1− P[absorbed at N].

Using the two expressions of the expectation E [YT ] and defining
ρ = q

p , we deduce that P[absorbed at 0] = ρk−ρN
1−ρN , which

characterizes the ruin given an initial wealth of S0 = k .
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Information and filtration

The martingale concept may be generalized to a probability space
(Ω,A,P) where F = {F0,F1, . . . } is a sequence of sub-σ-algebra of
A as Ft ⊆ Ft+1, ∀t.

We say that F is a filtration. The sequence F = {F0,F1, . . . }
describes the evolution of information across time.

As soon as an event is known at time t, that is, belongs to the
information available at time t, it is also known at time t + 1 as it
belongs to the information available at time t + 1.



13/17

Martingales Doob decomposition

Adapted process

A sequence (or process) Y = {Yt ; t ≥ 0} is called adapted if it is
Ft-measurable for any t, that is, if knowing Ft defines the path of
the process until t.

The realization Yt of the process Y is a function of the information
available at time t. In this context, we say that Y is a martingale
with respect to filtration F if for all t ≥ 0

1 E | Yt |<∞
2 E [Yt+1 | Ft ] = Yt .
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Submartingale and supermartingale

There exist many cases where the equality E [Yt+1 | Ft ] = Yt

defining a martingale does not hold, but may be replaced by an
inequality.

We say that Y is a submartingale with respect to the filtration F if
for all t ≥ 0

1 E [max(0,Yt)] <∞
2 E [Yt+1|Ft ] ≥ Yt .

The process has a larger value tomorrow than its value today, on
average.
Similarly, Y is a supermartingale with respect to the filtration F if
for all t ≥ 0

1 E [−min(0,Yt)] <∞
2 E [Yt+1|Ft ] ≤ Yt .
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Doob decomposition

Doob decomposition allows to characterize any submartingale as
the sum of two terms, one predictable and increasing, the other is a
martingale: Yt = St + Mt .

The sequence S = {St ; t ≥ 0} is said to be predictable if it is
Ft−1-measurable. It is called increasing if S0 = 0 and
P[St ≤ St+1] = 1 for all t.

St is the part of Yt that can be predicted using the information
available at time t − 1 and is called compensator of the
submartingale.
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Doob decomposition (cont’d)

We compensate Yt using St such that Yt − St = Mt becomes a
martingale.

The martingale Mt is the part that we cannot predict, that is, the
innovation or error term.

We may show that this decomposition is unique.
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Doob decomposition (cont’d)

This concept is used in finance to decompose the evolution of a
portfolio of financial assets in a predictable part and an
unpredictable part.

The unpredictable part has mean zero. Investors generally study the
evolution of the predictable part in order to determine an optimal
allocation with a given expected return.

This use of the Doob decompostion sets the grounds of the
dynamic valuation principle in the context of the binomial model in
which the price of an asset is equal to the risk-neutral expectation
of the discounted cashflows.
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