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Introduction

Many natural phenomenons exhibit changes of value at random
times rather than fixed times.

We model this behavior with continuous-time models, that is,
processes of the form {Xt : t ≥ 0}, where t is continuous.

The sample paths of the processes we consider here have integer
values.
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Poisson process

The Poisson process is ideal to model the occurrence of successive
events.

Every event is such that, in a time interval (t, t + ∆t) with ∆t
small, its probability of occurrence is proportional to ∆t, and that
the probability of occurrence of two events in the same small
interval is negligible.
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Poisson process (cont’d)

A Poisson process with intensity λ is a process N = {Nt : t ≥ 0},
whose values belong to 0, 1, 2, 3, ... and such that:

1 N0 = 0 and Ns ≤ Nt , if s < t,
2 if s < t , the number Nt − Ns of events in the time interval

(s, t] is independent of the arrival times and the arrivals in the
interval [0, s] (process with independent increments)

3 P[Nt+∆t = n + i |Nt = n] =


λ∆t + o(∆t) if i = 1
o(∆t) if i > 1
1− λ∆t + o(∆t) if i = 0

Notation: f (∆t) = o(∆t) is equivalent to lim∆t→0
f (∆t)

∆t = 0.
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Poisson process (cont’d)

The function f has a smaller asymptotic order than ∆t, and is
negligible in comparison to ∆t.

We say that Nt stands for the number of arrivals, occurrences, or
events of the process until time t. The process {Nt} is a counting
process and is a simple example of continuous-time Markov chains.

The intensity λ (or birth rate) corresponds to the probability of
occurrence of one event per unit of time.

The Poisson process Nt follows a Poisson distribution with
parameter λt, P[Nt = i ] = (λt)i

i! e−λt , i = 0, 1, 2, . . . . In particular,
we have E [Nt ] = λt.
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Poisson process (cont’d)

We can also characterize the Poisson process using the duration
between successive events.

Let T0,T1, . . . be given by T0 = 0, Tn = inf{t : Nt = n}. Tn is
the date of the nth arrival.

The durations (or intervals) are random variables dn = Tn − Tn−1.
These variables d1, d2, . . . are independent and follow an
exponential distribution with parameter λ, whose density function is
given by f (d) = λe−λd .

The distribution function is given by F (d) = 1− e−λd , and the
expectation of the durations is E [dt ] = 1

λ .
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Poisson process (cont’d)

Remarks:
one can rebuild the process N with durations d , using
Tn =

∑n
i=1 di , Nt = max{n : Tn ≤ t}.

the estimation of the lambda parameter is trivial as the
maximum likelihood estimator for an exponential law is the
inverse of the empirical mean:λ̂ = 1

d̄
, where d̄ is the empirical

mean of the observed durations.
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Birth process

The Poisson process has a constant intensity (or birth rate). We
may introduce a dependence between the number of previous
events and the birth rate.

A birth process with intensities λ0, λ1, λ2, . . . is a process
N = {Nt : t ≥ 0}, whose values lie in {0, 1, 2, 3, . . .} and such that:

1 N0 = 0 and Ns ≤ Nt , if s < t

2 if s < t , conditionally on the value of Ns , the number of
events Nt − Ns in the time interval (s, t] is independent of all
previous arrivals in the interval[0, s]

3 P[Nt+∆t = n + i |Nt = n] =


λn∆t + o(∆t) if i = 1
o(∆t) if i > 1
1− λn∆t + o(∆t) if i = 0
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Birth process (cont’d)

Particular cases:
Poisson process: λn = λ, ∀n
Simple birth: λn = nλ. Population growth where each
individual gives birth independently of the others, with
probability λ∆t + o(∆t) during the time interval (t, t + ∆t),
and where there is no death.
Birth with immigration: λn = nλ+ v . Birth process where the
birth rate depends on an external immigration rate.
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Birth and death process

A more realistic model in the context of a population growth also
allows for deaths.
Let Nt be the number of alive individuals at time t in a particular
population. This number follows a birth and death process if:

1 Nt is a Markov chain with values {0, 1, 2, . . .}
2 P[Nt+∆t = n + i |Nt = n] =

λn∆t + o(∆t) if i = 1
µn∆t + o(∆t) if i = −1
o(∆t) if |i | > 1
1− λn∆t − µn∆t + o(∆t) if i = 0

3 The birth rates λ0, λ1, λ2, . . . and death rates µ0, µ1, µ2, . . .
are such that λi ≥ 0, µi ≥ 0, and µ0 = 0.



12/31

Poisson, birth and death Waiting queues Risk process Cat Bonds

Birth and death process (cont’d)

Particular cases:
Birth process: µn = 0, ∀n.
Simple death with immigration: λn = λ, µn = nµ, ∀n.
Population that does not give birth but with some immigration
corresponding to a Poisson process, and for which each
individual has a probability µ∆t + o(∆t) to die in the time
interval (t, t + ∆t).
Simple birth and death: λn = nλ, µn = nµ, ∀n. Each
invidividual that is alive may either die during the time interval
(t, t + ∆t) with a probability µ∆t + o(∆t), or split with a
probability λ∆t + o(∆t).
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Waiting queues

Waiting queues theory is an important application of the stochastic
process theory.

Practical examples:
Connections to a server.
Call center capacity.
Number of counters in a bank.
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Inflows

A waiting queue has an input stream that stands for the client
arrivals (“client” has a broad meaning, e.g., cars, memory calls of a
computer, phone call in a call center).
As a first approximation, we assume that the durations between
arrivals are i.i.d. random variables.
The input stream is then a so-called stationary renewal process. We
get the simplest case by using a duration following the exponential
law: the input flow follows a Poisson process.
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Service

A waiting queue generally has a service provider that is specified by
The duration of the service, whose distribution is assumed to
be known.
The number of ticket offices (or counters).
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Service (cont’d)

A waiting queue is also characterized by a rule of service that
defines the service behavior:

System with or without waiting queue (i.e., in a system
without queue, clients are lost if they are not served
immediately); system with a limited capacity (i.e., clients are
lost when the queue is too long).
The order in which clients are served: first in first out (FIFO),
last in first out (LIFO).
Multiple client priority classes.
Contingent probability of client loss: the client may be lost
with a probability depending on the length of the queue.
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Kendall notation

For a mathematical study, we classify the waiting queues following
the standardized Kendall notation A/B/C/D. The letters have the
following meaning:

A: input stream
B: duration of service
C: number of ticket offices
D: additional information, as follows.

The letter M (for Markov) for input streams stands for a Poisson
stream; for the duration of service, it stands for an exponential
duration.
The letter D (for Determinist) for input streams stands for regular
interval durations; for the duration of service, it stands for a fixed
time for any client.
The letter G stands for the general case.
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Example: M/M/1 queue

It is the simplest example of a waiting queue:
The input stream follows a Poisson process with intensity λ,
or, equivalently, the durations between the arrivals follow an
i.i.d. exponential distribution with parameter λ.
The service durations are i.i.d. and follow an exponential law
with parameter µ.
There is only one ticket office and client are served according
to a first in first out rule; the capacity of the queue is infinite.

Remark: the M/M/1 queue is equivalent to a birth and death
process whose birth and death rates are given by λn = λ, ∀n and
µ0 = 0, µn = µ, ∀n > 0, respectively.
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Example: M/M/1 queue (cont’d)

If the ticket office is open without interruption, the average service
rate is equal to µ. As the average input flow is λ per unit of time,
it is unsustainable if λ > µ.
We measure the traffic intensity with the ratio ρ = λ

µ and use it to
analyse the behavior of the queue.
Let Nt be the number of clients in the system at time t (i.e.,
clients in the queue or being served):

The probability that a client being served at time t finishes at
time t + ∆t does not depend on t (exponential service).
The probability that a new client arrives during the time
interval (t, t + ∆t) does not depend on t (exponential
arrivals).
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Example: M/M/1 queue (cont’d)

We can show that if ρ < 1 (or equivalently λ < µ), that is, the
average input flow is strictly smaller than the service flow.

The random number of people in the process Nt is a recurrent
process: it can take values that are arbitrarily large or the
value zero an infinite number of times.
There is a stationary regime given by the the law
P[Nt = n]→ πn = (1− ρ)ρn as t →∞.

We deduce that the average number of people in the system is
Eπ[Nt ] =

∑
n nπn = ρ

1−ρ .
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Example: M/M/1 queue (cont’d)

If ρ > 1 (or eq. λ > µ), that is, the average input flow is larger
than the service flow, the length of the queue goes to infinity.

If ρ = 1 (or eq. λ = µ), that is, if the average input flow is equal to
the service flow, the random number of people in the system Nt is
a recurrent system but there is no stationary regime (e.g., there are
large oscillations in the number of people in the waiting queue).
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Exemple: M/M/1 queue (cont’d)

Remarks:
We can generally characterize the laws and moments of the
queue length, that is, the number of people waiting to be
served, the closing times required (while maintaining the
service) to reduce the queue, etc.
We may also analyse the queues M/M/k, M/M/∞, . . . , or
impose bounds on the arrival and waiting times, work with
simultaneous arrivals (batches), etc.
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Risk process

In insurance, we use risk processes in order to determine the
amount of reserves required to finance occasional sinisters (or
claims). These risk models use Poisson processes to model the
arrival of sinisters.

Let N = {Nt} be a Poisson process with constant intensity λ and
let U1,U2, . . . be i.i.d. variables.

The process N∗ = {N∗t = U1 + U2 + · · ·+ UNt} is called compound
Poisson process. Un is the change of N∗t .
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Risk process (cont’d)

At the time of the nth arrival of the Poisson process, a random
quantity Un is added to N∗t .

The random variables U1,U2, . . . stand for the sinisters and the
Poisson process models their arrival times. The durations between
services thus follow an exponential law with parameter λ.
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Reserve risk model

The reserve risk model based on a compound Poisson process is
made of:

1 Random times at which sinisters are recorded, and described
by a Poisson process {Nt} with constant intensity λ.

2 Rhe sizes of the respective sinisters U1,U2, . . . are i.i.d. and
positive by convention.

3 An initial risk reserve u.
4 The premium are assumed to be gathered at a constant rate
β > 0 such that the return is a linear function of time.

The reserve risk process {Rt : t ≥ 0} is then given by
Rt = u + βt −

∑Nt
i=1 Ui .

The surplus process {St : t ≥ 0} is given by St =
∑Nt

i=1 Ui − βt.
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Ruin

The time of ruin τ(u) = min{t : Rt < 0} = min{t : St > u} is the
first time at which the reserve process gets negative, or
equivalently, the surplus process gets larger than u.
We generally study the general behavior of the ruin probability

1 at a finite horizon ψ(u; x) = P[τ(u) ≤ x ]

2 at an infinite horizon ψ(u) = limx→∞ ψ(u; x) = P[τ(u) ≤ ∞].
The probability ψ(u) corresponds to an ultimate probability of ruin,
and ψ̄ = 1− ψ(u) to a survival probability.
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Cat bond

Cat bonds are used as alternative financing sources in insurance.

It is based on the securitization of the catastrophe risk.

Why would we need alternative sources in addition to the usual
reinsurance process?
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Cat bond (cont’d)

1 Population growth in regions with high risk of disasters such as
earthquakes or tornadoes (e.g., growth in California during the
last 30 years is three times larger than the average growth in
the US). Also, the losses caused by catastrophes rose from
$48.7 billions between 1950 and 1988 to $98 billions between
89 and 98, that is, an increase of 101.2%.

2 Consolidation between largest reinsurers raises difficulties.

The amount of significant disasters is increasing. From 1970 to
1988: 11 events during 19 years. From 1989 to 1995: 19 events
during 7 ans. We estimate that we should expect one sinister larger
than $1 ($3) billion per year (per 2.5 years) currently.
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Cat bond (cont’d)

For a typical cat bond, we build a special purpose vehicule (SPV)
that acts like a reinsurer by issuing debt on the financial markets,
and by providing a reinsurance policy to the insurer. The policy
pays the insurer in case of a loss that is larger than some threshold.

The cashflows paid to the debt holders are rerouted to pay finance
the insurers in case of sinister; the interest payments are suspended,
and/or a fraction of the capital is cut.
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Cat bond (cont’d)

Initially (1996), cat bonds only covered one particular time of
sinister and a particular region with an horizon of one year.

Today, they often cover multiple types of sinisters and multiple
country with an horizon of multiple years.

There have been 7 transactions in 97 ($1 billion) and 8 transactions
in 98 ($1 billion). The average number and amount of sinisters are
increasing every year.

Investors consider cat bonds as a new class of assets that offers
returns uncorrelated to other usual products such as stocks and
bonds. Such assets help reduce the risk of a portfolio because of
diversification.
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Example - Atlantic bassin hurricane

The main factor for sinisters is the wind intensity. We can model
the arrival of high velocity streams with a Poisson process.

We compute the average arrival time of an event with some
minimum amplitude, and the probability that there is no event with
a large amplitude during a given period (e.g., a year).

The average arrival time is approximately 3.6 years for winds at 125
mph or more, and the probability that there is no event during one
year is 74% (i.e., there is 26% probability that such an event
happens during the year). We also model the atmosphere pressures
as low pressure environments increase the probability of significant
storms.
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