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Stochastic process

Stochastic processes are used to model the state of a time
dependent random system.

We work with a probability space (Ω,A,P) and a function
(t, ω)→ X (t, ω) of R+ × Ω in a space E giving the system state.

For ω fixed, that is, a particular evolution of the system, the
successive states are given by the function t → X (t, ω) that we call
trajectory or path by analogy with a system modeling the position
of a particle.
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Definition: stochastic process

A stochastic process X = {Xt , t ∈ T} is a familly of rv defined on
the same probability space and indexed by the time t taking its
values in a set T of indices.

If T = {0, 1, 2, 3, . . . } or T = {. . . ,−2,−1, 0, 1, 2, 3, . . . }, the
process is said to be a discrete-time process.
If the set T = R+ or T = R, it is said to be a continuous-time
process.
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Example: simple random walk

Let X1,X2, . . . be a family of independent rv, each taking value 1
with probability p and value –1 with probability 1− p.

Let the sum process St = S0 +
∑t

i=1 Xi . The series
S = {St , t ∈ N} is a random walk starting at S0.

Say that St stands for the wealth of a gambler after t rounds,
earning $1 if she wins and paying $1 if she loses, and starting with
initial wealth $S0.

We can consider the case P[St ≤ 0] (ruin probability), or
min {t ∈ T : St ≤ 0} (stopping time), for instance.
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Example: simple random walk (cont’d)

We can rewrite the random walk by St = St−1 + Xt . The particle
being at the position St−1 at time t − 1 can either go left 1 unit
with probability p or go right 1 unit with probability 1− p.

Properties:
1 Space homogeneity:

P[St = j |S0 = a] = P[St = j + b|S0 = a + b]

2 Time homogeneity: P[St = j |S0 = a] = P[St+h = j |Sh = a]

3 Markov property:
P[St+1 = j |S0 = s0, . . . ,St = st ] = P[St+1 = j |St = st ], ∀t
(conditionally on present, future does not depend on past)

The process is said to be memory-less. The random walk is a
particular case of Markov chains.



7/57

Introduction Markov chains Application in insurance Application in finance

Definition: Markov chain

We consider a discrete-time process X taking values in a countable
space called state space.

The process X is a Markov chain if it satisfies the Markov condition
P[Xt = x |X0 = x0,X1 = x1, . . . ,Xt−1 = xt−1] = P[Xt = x |Xt−1 = xt−1]
for any t.

This Markov property is equivalent to
P[Xt+1 = x |Xt1 = xt1 ,Xt2 = xt2 , . . . ,Xtk = xtk ] = P[Xt+1 = x |Xtk = xtk ]
with 0 ≤ t1 ≤ · · · ≤ tk ≤ t, or also
P[Xt+h = x |X0 = x0,X1 = x1, . . . ,Xt = xt ] = P[Xt+h = x |Xt = xt ]
for any t, h.
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Definition: Markov chain (cont’d)

We can generalize this concept to order r Markov chains:
P[Xt = x |X0 = x0,X1 = x1, . . . ,Xt−2 = xt−2,Xt−1 = xt−1]

= P[Xt = x |Xt−1 = xt−1,Xt−2 = xt−2, . . . ,Xt−r = xt−r ]

As the state space is countable, we can map it to the set of
integers. We say that when Xt = i , the chain is in state i at time t,
or also visits i or takes value i .

The chain evolution depends on the probabilities
P[Xt = j |Xt−1 = i ] called transition probabilities. In general, they
depend on t, i , and j . However, we often consider a simple case
where they depend on i and j , but are independent on t.
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Homogeneity

We consider a simple case where transition probabilities depend on
i and j , but are independent on t. A Markov chain X is said
homogenous if P[Xt+1 = j |Xt = i ] = P[X1 = j |X0 = i ], ∀t, i , j . It
is a stability condition on the probabilities in time.

The matrix P = (pij) with pij = P[Xt+1 = j |Xt = i ] is the
transition matrix of the chain. The transition matrix P is a
stochastic matrix as it satisfies:

1 all entries of P are non negative: pij ≥ 0, ∀i , j .
2 for each row of P , the sum of the entries gives 1:

∑
j pij = 1,

∀i .
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Example: simple random walk

We move right 1 unit (go from i to i + 1) with probability p and
left 1 unit (go from i to i − 1) with probability 1− p.

The state space is {0,±1,±2, . . . } and the transition probabilities

are pij = P[St = j |St−1 = i ] =


p if j = i + 1,
1− p if j = i − 1,
0 else.

.
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Transitions

We consider the evolution of the chain in h steps (horizon h). The
h steps transition matrix P(t, t + h) is the matrix whose entries
give the transition probabilities in h steps:
pij(t, t + h) = P[Xt+h = j |Xt = i ].

The homogeneity hypothesis is equivalent to the condition
P(t, t + 1) = P (the matrix is not time dependent).

Using Chapman-Kolmogorov equations, we get:
pij(t, t + h + l) =

∑
k pik(t, t + h)pkj(t + h, t + h + l), or using

matrix notation, P(t, t + h + l) = P(t, t + h)P(t + h, t + h + l).
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Transitions (cont’d)

In the homogenous case, we have P(t, t + 2) = P(t, t + 1 + 1) =
P(t, t + 1)P(t + 1, t + 1 + 1) = PP = P2. By recurrence
P(t, t + h) = Ph and P(t, t + h + l) = PhP l = Ph+l .

In particular, P(t, t + h) = P(0, 0 + h) = Ph.

The evolution of the chain depends on the initial state at time 0
and the transition matrix P . Let µ(t)i = P[Xt = i ] and the
corresponding row vector µ(t) = (µ

(t)
i ).

We can show µ(t) = µ(0)Pt , that is, the random evolution of the
chain is characterized by the transition matrix P and the initial
probability mass function of µ(0).
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State classification

Let us consider the chain evolution as a particule movement
between multiple states. We consider the time (possibly infinite)
that the particle needs to come back to its starting point.

A state i is said recurrent (or persistent) if
P[Xt = i |X0 = i ] = pii (t) = 1 for some t ≥ 1.

A state i is said transitory (or transient) if this probability is strictly
smaller than 1.
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First passage time

We can also consider the probabilities of first passage
fij(t) = P[X1 6= j ,X2 6= j , . . . ,Xt−1 6= j ,Xt = j |X0 = i ], that is, the
probability that the first visit of state j needs exactly t steps
starting at i .

Let us define the probability that the chain visits state j at some
point in time, starting at state i , by fij =

∑∞
t=1 fij(t).

A state j is recurrent if and only if fjj = 1.

Let Tj = min {t ≥ 1 : Xt = j} be the time of first passage of state
j , with Tj =∞ if the state is never visited.

The state j is transitory if and only if P[Ti =∞|X0 = i ] > 0.
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Mean time of recurrence

We also compute the mean time of recurrence mi of state i defined

by mi = E [Ti |X0 = i ] =

{∑
t tfii (t) if i recurrent,

∞ if i transitory .

mi can nonetheless be infinite for a recurrent state i and we say
that:

i is null recurrent if mi =∞
i is non-null recurrent (or positive recurrent) if mi <∞
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Periodicity

The period d(i) of a state i is defined as the largest common
divider of all values t such that pii (t) > 0.

The state is said to be
periodic if d(i) > 1
aperiodic if d(i) = 1

We thus have that pii (t) = 0 unless t is a multiple of d(i).
A state is said to be ergodic if it is recurrent, non-null, and
aperiodic.
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Chain classification

We define the class of a chain by looking at the links of its states:
State j is accessible from state i if there exists some t such
that pij(t) > 0
State i communicates with state j , or i → j , if j is accessible
from i

States i and j intercommunicate, or i ↔ j , if i communicates
with j and j communicates with i .

If i ↔ j , then
1 i and j have the same period
2 i is transitory if and only if j is transitory
3 i is null recurrent if and only if j is null recurrent.
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Chain classification (cont’d)

A set C of states is said
closed if pij = 0 for all i ∈ C , j /∈ C

irreducible if i ↔ j for all i , j ∈ C

If the chain reaches a state that belongs to a closed set, it never
leaves this set.
A closed set containing exactly one element (singleton) is said to
be absorbing.
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Stationary distribution

What is the behavior of a Markov chain when we wait a large
number of periods? We are interested in the distribution of Xt when
t is large. The existence of a limit distribution for Xt as t →∞ is
strongly linked to the existence of a stationary distribution.

The vector π is called stationary distribution of the chain if π has
entries (πj) such that

1 πj ≥ 0 for all j , and
∑

j πj = 1
2 π = πP , that is, πj =

∑
i πipij for all j
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Stationary distribution (cont’d)

By iterating, we get that π = πPt , for any t. Additionally, we have
seen that homogenous chains have the property µ(t) = µ(0)Pt with
µ(t) = (µ

(t)
i ) defined by µ(t)i = P[Xt = i ].

Therefore, if property µ(0) = π, that is, X0 follows the distribution
given by π, then Xt also follows distribution π.
The distribution of Xt is stationary as time goes, which implies that
π is also the limit distribution of Xt as t →∞.
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Stationary distribution (cont’d)

An irreducible chain has a stationary distribution π if and only if all
of its states are non-null recurrents.

In this case, π is the unique stationary distribution and is given by
πi = m−1

i with mi the mean time of recurrence of i .
For irreducible and aperiodic chains, we have that pij(t)→ m−1

j ,
∀i , j as t →∞.
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Application in insurance, reinsurance chain

Markov chains have applications in insurance:
bonus-malus system
reassuring chain
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Bonus-malus system

Use of Markov chains to model a problem of car insurance:
bonus-malus system.

We set a finite number L of classes that define the premium paid by
the insured.
Each year, the class of the insured is updated depending on the
class of the previous year and the number of sinisters (or claims)
during the year.
If no sinister is recorded, the insured is moved to a class whose
premium is lower; conversely, if sinisters have been reported, she is
moved to a class whose premium is higher.



24/57

Introduction Markov chains Application in insurance Application in finance

Model: bonus-malus system

The parameters of the model are the following:
L classes indexed by 1 to L. Classe 1 is called superbonus and
class L is called supermalus. The annual premium depends on
the number of insured people in each class and is computed
using a fee scale.
a fee (or premium) scale b = (b1, . . . , bL) with
b1 ≤ b2 ≤ · · · ≤ bL

a transition rule that defines the transfer from one class to the
other as a function of the number of sinisters. If k sinisters are
reported tij(k) = 1 if the class changes from i to j, and
tij(k) = 0 otherwise
an initial class i0 for any new customer.

Let T (k) = (tij(k)), each T (k) is a 0− 1 matrix for which each
row has exactly one 1.
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Model: bonus-malus system (cont’d)

Suppose that the number of sinisters per year forms a
sequenceY1,Y2, . . . of i.i.d. rv and with mass function
P[Y = k] = qk .

We denote by X1,X2, . . . the successive classes through which the
insured has gone, and suppose that the class of a particular year
only depends on the class of the previous year and the number of
sinisters during the year. We can describe the evolution of {Xt}
using the recurrence equation Xt = φ(Xt−1,Yt), with φ(i , k) = j if
and only if tij(k) = 1.
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Model: bonus-malus system (cont’d)

This evolution corresponds to a Markov chain whose probabilities of
transition are given by pij =

∑∞
k=0 qktij(k).

In practice, we suppose that the number of sinisters follows a
Poisson law with parameter λ, which leads to
pij =

∑∞
k=0

λk

k! e
−λtij(k).
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Model: bonus-malus system (cont’d)

In a bonus-malus system, the fee bi is applied every time an insured
visits class i . He may then consider

the cumulative sum of the premia paid until t: Rt =
∑t−1

k=0 bXk

the discounted cumulative sum of the premia paid until t:
Ra
t =

∑t−1
k=0

bXk
(1+r)k

, with interest rate r

the discounted cumulative sum of the premia paid with an
infinite horizon: Ra

∞ =
∑∞

k=0
bxk

(1+r)k
.
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Model: bonus-malus system (cont’d)

We may show that when the chain has an initial class X0 = i0, we
have

E [Rt ] = ei0
∑t−1

k=0 P
kb′

E [Ra
t ] = ei0(Id − (1 + r)−1P)−1(Id − (1 + r)−nPn)b′

E [Ra
∞] = ei0(Id − (1 + r)−1P)−1b′,

where ei0 denotes the row vector with zeros everywhere except on
the i0th entry which which is equal to 1.
We may also show that if the chain has a stationary distribution π,
E [Ra

t ] is a linear combination of the stationary fee, i.e. b̄ = πb′.
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Chain of reinsurance

Suppose that an asset such as a plane needs insurance. Its value is
too high for a unique company to bear the risk.
We start at time 0 with an insurer of first rank. Then, the insurer
negotiates with second rank insurers in order to sell them part of
the original insurance. Each on the second rank companies does the
same and negotiates part of its own insurance policy share with a
third rank insurer. This sequence corresponds to a (simplified)
chain of reinsurance.
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Model: chain of reinsurance

Suppose that each company needs a certain time interval (e.g.
administrative tasks) with distribution function F before signing
simultaneously all its contrats of reinsurance.

The number of reinsurance companies is assumed to be randomly
distributed with some probability mass function.

Each company initiates its chain of searches, independently on the
history of other companies. All administrative durations are i.i.d.
following distribution F .
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Model: chain of reinsurance (cont’d)

The sequence {Xt} counting the number of companies in each
node of the chain at time t (tth rank) is called branching process of
Galton-Watson-Bienaymé.

Let Rt,i be the number of companies linked to company i in node t
and suppose that all Rt,i are i.i.d. The process {Xt} defined by
X1 = 1, Xt+1 =

∑Xt
i=1 Rt,i is a Markov chain.

We may show that the average number of companies at link t = n ,
that is, E [Xn], is equal to E [Xn] = mn where m is the average
number of companies contacted at any link and by any company.
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Application in finance

Markov chains have multiple applications in finance, e.g.:
credit ratings
binomial model for derivatives pricing
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Change of credit rating

A change in the credit rating of an issuer relates to the increase or
decrease of the probability of default. It has an impact on the
assets (debts) it might issue.
We may go bankrupt, or have the credit quality increase or
decrease. It is important to correctly estimate these changes in a
context of quantitative risk management with risky assets.
If returns follow approximately a normal distribution, mean and
variance are sufficient to identify risk-return arbitrages. Returns are
no longer normally distributed when there is a risk of default, as a
default event might wipe out the entire value of the assets.
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Change of credit rating (cont’d)

The distribution is skewed because of the increased risk of large loss
and has more extreme events than the normal distribution
(kurtosis).
The standard deviation (or variance) is a symmetrical risk measure
and is not adapted to this context. We prefer using quantiles of the
portfolio return distribution (or the value distribution).
We estimate quantiles using simulations of the asset values across
time, taking into account market conditions (interest rates,
exchange rates, ...) and also changes in the credit risk (default,
credit rating change)
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Model: change of credit rating

We use a Markov chain whose states correspond to credit ratings.

We model the probabilities of transition between ratings, as well as
the default probability, e.g. probability of going from rating AAA to
rating AAB, or probability to go from rating BBB to bankruptcy.
These parameters are estimated using historical data on the change
of ratings and defaults of firms.
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Model: change of credit rating(cont’d)

We then simulate:
1 the evolution of the Markov Chain to obtain the change of

ratings of the portfolio assets
2 the evolution of the financial variables in order to keep track of

the changes in financial markets

We build a histogram of the portfolio PnL with a maturity of 1
year, 2 years, ... We compute the associated portfolio quantiles.
We define the economic capital as the difference between an
extreme loss quantile (99.9%) and the average loss. This value is a
buffer used to absorb the impact of large unexpected losses
(defaults).
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Options valuation

An option is a financial asset giving the right (but not the
obligation) to its holder to buy or sell some predefined amount of
another asset, at some particular date and price.
Multiple factors define an option:

option kind: call (option to buy), put (option to sell)
underlying asset (stock, debt, interest rate, exchange rate, ...)
whose value at time t is denoted by St)
quantity
maturity: expiration date (denoted by T )
exercise price: price at which the exercise takes place (denoted
by K )
kind of exercise: European (at maturity), American (until
maturity)
premium: price of the option
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Payoff of a European option

Consider a call option:
if ST > K , we exercise the option and the profit is ST − K as
we pay a price K for an asset that has value ST

if ST ≤ K , we do not exercise the option and there is no
profit, as we do not buy the underlying at a price higher than
its market price.

Thus, the payoff (or value of the call option) at maturity is
max(ST − K , 0) = (ST − K )+. Symmetrically, the payoff of a put
option at maturity is given by (K − ST )+.
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Pricing and hedging

The option seller faces two problems:
1 a pricing problem: determine the value today of the future

random payoff
2 hedging problem: be sure to be able to honor her part of the

contract at maturity

The basic assumption in derivatives pricing is absence of arbitrage
(no free lunch), that is, we cannot make a profit (above riskfree
rate) without investing an initial capital and taking risks.
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Put-call parity

We can deduce the put-call parity relationship from the absence of
arbitrage assumption. It takes the form Ct − Pt = St − Ke−r(T−t),
i.e., the difference between the price of a call option and a put
option (with same strike price and maturity) is equal to the
difference of the underlying price and the discounted strike price.
We may also deduce price boundaries:

St > Ct > max(St − Ke−r(T−t), 0)

Ke−r(T−t) > Pt > max(Ke−r(T−t) − St , 0)

These results are only due to the absence of arbitrage hypothesis,
in particular there is no assumption on the stochastic process
followed by the assets.
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European call pricing

Unfortunately, this assumption is not sufficient to compute a unique
price, and boundaries are large.
We need to model the evolution of the underlying asset. The most
famous model is Black-Scholes model (1973). It is a
continuous-time model which can be defined as the limit of a
discrete-time binomial model as the time interval between price
changes goes to zero.
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One-period binomial model

One period (two dates, t et t + 1),
Two states: high (St → St+1 = uSt) and low
(St → St+1 = dSt), where d < u are multiplicative factors,
Two financial assets: a stock (St), and a risk free asset
(1→ 1 + r in any state).

We show that the probability of the two states does not have any
impact on the option price.
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One-period binomial model (cont’d)

Hypothesis: dSt < K < uSt . Indeed, if K < dSt < uSt , the buyer
always exercises his option, thus nobody would like to sell such a
contract (and inversely for K > dSt > uSt).
We want to determine the call price at time t.The payoff function
at t + 1 is max(St+1 − K , 0), that is

max(uSt − K , 0) = uSt − K in the up state
max(dSt − K , 0) = 0 in the down state
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Pricing by replication

In order to evaluate the option price, we build a portfolio with the
underlying risky asset and the risk free asset that replicates the
option payoff.
If there is no arbitrage between the option and such a portfolio,
their prices should be the same as they both have the same payoff
at maturity in any state of the world.
If they do not have the same price, it means that there is an
arbitrage opportunity and it is profitable to sell the expensive asset
and buy the cheap one. An immediate and risk free profit is made
as the payoffs of this strategy offset each other in any state of the
world.
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Pricing by replication (cont’d)

We denote by α1 the amount of stocks, α2 the amount of risk free
asset.

At time t, the portfolio value is α1St + α2

At time t + 1, the portfolio value is α1St+1 + α2(1 + r), that
is, α1uSt + α2(1 + r) in the up state, and α1dSt + α2(1 + r)
in the down state.

We determine the value of α1 and α2 such that the portfolio
replicates the option payoff:

α1uSt + α2(1 + r) = uSt − K

α1dSt + α2(1 + r) = 0.
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Pricing by replication (cont’d)

We obtain a system of equations with two equations and two
unknowns whose solution is α∗1 = uSt−K

uSt−dSt and

α∗2 = − (uSt−K)dSt
(uSt−dSt)(1+r) .

The current option price must be equal to the portfolio price whose
weights are given by α∗1,α

∗
2 in order to avoid arbitrages. The option

price is therefore given by
Ct = α∗1St + α∗2 = uSt−K

uSt−dSt St −
(uSt−K)dSt

(uSt−dSt)(1+r) .
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Pricing with risk-neutral expectation

Defining π = (1+r)St−dSt
uSt−dSt = (1+r)−d

u−d , we may rewrite the option
pricing formula as Ct = 1

1+r [π(uSt − K ) + (1− π)0].
This expression corresponds to the expectation of a binomial law
taking value uSt−K

1+r with probability π and value 0
1+r with

probability 1− π. The option price is thus an expectation of the
discounted future payoffs, where the probabilities have been shifted.
We call π risk-neutral probability of the up state, in contrast to the
true or historical probability p. The probability p is not involved in
the pricing equation and is therefore irrelevant in this context!
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Risk-neutral probability

Let (p, 1− p) be the historical probabilities of an up and down
move of the stock. As there are only two possible states, St+1
follows a binomial law that takes value uSt with probability p and
value dSt with probability 1− p.
The expectation is Ep[St+1] = puSt + (1− p)dSt and the expected
return is given by Ep [St+1]

St
= pu + (1− p)d .

By adding 0 = (1 + r)− [p(1 + r) + (1− p)(1 + r)] to this
expression, we get:

Ep[St+1]

St
= (1 + r)− [p(1 + r) + (1− p)(1 + r)] + pu + (1− p)d

= (1 + r) + [u − (1 + r)]p + [d − (1 + r)p](1− p)
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Risk-neutral probability (cont’d)

Therefore, the term
Ep [St+1]

St
− (1 + r) = [u − (1 + r)]p + [d − (1 + r)p](1− p)

corresponds to a risk premium, that is, an additional return paid as
a compensation for risk.
Doing the same calculations with the risk-neutral probability π
rather than p, we get Eπ[St+1] = πuSt + (1− π)dSt = (1 + r)St .

The expected return is thenEπ[St+1]
St

= 1 + r , i.e., computing the
expected return with probability π gives a risk free return.
The risk premium is thus zero: Eπ[St+1]

St
− (1 + r) = 0.
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Risk-neutral probability (cont’d)

Using the risk-neutral probability π rather than the historical
probability p neutralizes the risk premium, i.e., investors ask for the
same return as truly risk-neutral agents. The general result follows:
In a one-period model with two states of the world, there exists a
unique probability π called risk-neutral probability, such that for
each asset xt+1 ∈ R2 its price and at time t is equal to
Pt = 1

1+r E
π[xt+1], that is, the discounted risk-neutral expectation

of the future random payoffs.
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Risk-neutral probability (cont’d)

Note that there is no notion of utility function with this approach.
This approach uses the absence of arbitrage hypothesis to value
assets, which does not require notions of equilibrium and modeling
of economic agents with utility functions.
We make the assumption of a perfect market:

1 we can buy or sell an asset at the same price (no transaction
fees on the risk free asset)

2 we can borrow or lend at the same interest rate (no fee on the
risk free asset)

In this model, we only have one period (or two dates), which is a
very short Markov chain! We generalize this result to a multi-period
binomial model.
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Multi period binomial model

Multiple periods: n periods, or n + 1 dates
Two states of the world from one period to the other: up and
down
Two financial assets: a stock and a risk free asset

Let n = 2, that is, three dates 0, 1, 2. At the end of the first period,
there are two possibilities: S0 → S1 = uS0 or S0 → S1 = dS0.
At the end of the second period, there are three possibilities:
S1 → S2 = uuS0 or S1 → S2 = udS0 = duS0 or S1 → S2 = ddS0.
We thus have a recombining tree: the price is the same after an
upward and downward move that it is after a downward and upward
move. Also, the price only depends on the previous period (Markov
property).
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Pricing by replication

The payoff function at maturity is
after two ups Cuu = max(S0uu − K , 0)

after one up and one down (and vice versa)
Cud = max(S0ud − K , 0)

after two downs Cdd = max(S0dd − K , 0)



54/57

Introduction Markov chains Application in insurance Application in finance

Pricing by replication (cont’d)

Consider the second period, and the asset having the following
payoffs:

in up state Cuu = max(S0uu − K , 0)

in down state Cud = max(S0ud − K , 0).
We see that we are back to a one-period model and that we can
apply the same tools as in the previous slides, using the risk-neutral
valuation.
We thus have:

Cu = 1
1+r [πCuu + (1− π)Cud ] after an upward move in the

first period
Cd = 1

1+r [πCud + (1− π)Cdd ] otherwise.
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Pricing by replication (cont’d)

By applying the same method recursively for the first period, we
get C = 1

1+r [πCu + (1− π)Cd ], that is:

C = 1
(1+r)2

[π2(S0uu − K )+ + 2π(1− π)(S0ud − K )+ + (1−
π)2(S0dd − K )+].
This expectation corresponds to a binomial law B(2, π) whose
events are (S0uu − K )+, (S0ud − K )+and (S0dd − K )+ with
probabilities π2, 2π(1− π) et (1− π)2, respectively.
Again, the asset price is given by the discounted expectation of the
future payoffs under the risk-neutral probability measure.
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Generalization

We may apply the same technique with an arbitrary number of
periods n. We get:
C = 1

(1+r)n
∑n

j=0
(n
j

)
πj(1− π)n−j(ujdn−jS0 − K )+, with(n

j

)
= n!

j!(n−j)! .

The expectation is taken with respect to the risk-neutral
distribution B(n, π).
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Generalization (cont’d)

Taking an horizonT and dividing the interval [0,T ] in n
subintervals of length T/n, we get that the binomial formula
converges to the Black-Scholes formula as n tends to infinity, that
is, a continuous-time model where the underlying asset is assumed
to follow a geometric Brownian motion.

This kind of numerical approximation of a continuous-time model is
extremely useful when computations are too difficult to perform
explicitely.
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