Stochastic Processes in Finance Prof. Olivier Scaillet TA Evgenii Anisimov

HW 6 Ito's Lemma

Exercise 1

Let W_t be a Wiener process and t > s. Compute: a. $\mathbb{E} [W_t \mid W_s]$ b. $\mathbb{E} [W_s^2 W_t]$.

Exercise 2

Prove that $Z_t = \exp\left[-\theta W_t - \frac{1}{2}\theta^2 t\right]$ is a martingale, where W_t is a Wiener process.

Exercise 3

Let W_t be a Wiener process. Compute the stochastic differential equation (i.e., dZ_t) followed by:

- a. $Z_t = (X_t)^2$, where $dX_t = \mu X_t dt + \sigma X_t dW_t$ b. $Z_t = 3 + t + e^{W_t}$ c. $Z_t = e^{\alpha t}$ d. $Z_t = \int_0^t g(s) dW_s$ e. $Z_t = e^{\alpha W_t}$
- f. $Z_t = e^{\alpha X_t}$, where $dX_t = \mu dt + \sigma dW_t$.

Exercise 4

Let W_t be a Wiener process. Applying the Ito's lemma, compute dX_t^2 for:

a. $dX_t = dt + X_t dW_t$ b. $dX_t = dW_t$.

Exercise 5

Let W_t be a Wiener process. Show that: a. $\mathbb{E}\left[\int_0^t dW_s\right] = 0$ b. Var $\left[\int_0^t dW_s\right] = t$.

Exercise 6

Show that:

a. $\int_0^t W_s dW_s = \frac{1}{2}W_t^2 - \frac{1}{2}t$ b. $\int_0^t s dW_s = tW_t - \int_0^t W_s ds$ c. $\int_0^t W_s^2 dW_s = \frac{1}{3}W_t^3 - \int_0^t W_s ds,$ where W_t is a Wiener process.

Exercise 7

Consider the following stochastic differential equation:

 $dX_t = -\beta X_t dt + \sigma dW_t,$

where $\beta > 0$, $X_0 = x$, and W_t is a Wiener process.

- a. What is the stochastic differential equation of $Y_t = e^{\beta t} X_t$?
- b. Given a deterministic function g(t), show that: $\int_0^t g(s) dW_s$ is the $\mathcal{N}(0, \int_0^t g^2(s) ds)$ Gaussian random variable.
- c. What is the distribution of X_t ?
- d. Find the limit distribution of X_t , i.e. $t \to \infty$.