HW 5

Martingales

Exercise 1

Let $\left\{N_{t}, t \geq 0\right\}$ be a Poisson process such that, on average, the number of events between 0 and t is equal to λt. Show that the process $M_{t}=N_{t}-\lambda t$ is a martingale. Identify the predictable part of N_{t}.

Exercise 2

Financial markets are influenced by good and bad news. Let N_{t}^{G} be the total number of arrivals of good news until time t and N_{t}^{B} the total number of arrivals of bad news until time $t . N_{t}^{G}$ and N_{t}^{B} are independent Poisson processes with parameter λt. Show that the process $M_{t}=N_{t}^{G}-N_{t}^{B}$ is a martingale with respect to the filtrations

- $\mathcal{F}_{t}=\sigma\left(N_{s}^{G}, N_{s}^{B}, s \leq t\right)$,
- $\mathcal{G}_{t}=\sigma\left(M_{s}, s \leq t\right)$.

Exercise 3

Let $\left\{S_{t}, t \geq 0\right\}$ be a stochastic process with $S_{0}=0$ and independent and identically distributed (iid) increments: $S_{t}-S_{s} \sim \mathcal{N}\left(0, \sigma^{2}(t-s)\right), \forall t>s$. Are the following processes martingales?
a. $Z_{t}=S_{t}^{2}$
b. $Z_{t}=S_{t}^{2}-\sigma^{2} t$.

Exercise 4

Show that if Z_{t} is a martingale with respect to filtration \mathcal{F}_{t}, we have:

$$
\forall t: E\left[Z_{t}\right]=k,
$$

where k is constant.

Exercise 5

Let $Z_{1}, Z_{2}, Z_{3}, \ldots$ be iid random variables (rvs) such that

$$
P\left[Z_{n}=1\right]=P\left[Z_{n}=-1\right]=\frac{1}{2}, \quad n=1,2, \ldots
$$

Let

$$
X_{n}=\sum_{i=1}^{n} Z_{i}, \quad n=1,2, \ldots
$$

with $X_{0}=0$. The process X_{n} is a symmetric random walk.

1. Show that the filtrations $\mathcal{F}_{n}=\sigma\left(X_{0}, X_{1}, \ldots, X_{n}\right)$ and $\mathcal{G}_{n}=\sigma\left(Z_{0}, Z_{1}, \ldots, Z_{n}\right)$ contain the same information.
2. Show that X_{n} is a martingale with respect to the filtration \mathcal{F}_{n}.
3. Show that $X_{n}^{2}-n$ is a martingale with respect to the filtration \mathcal{G}_{n}.

Exercise 6

Let W_{t} be a standard Brownian motion. Are the following processes martingales?

1. W_{t}
2. $Z_{t}=W_{t}-\mu t$
3. $Z_{t}=W_{t}^{2}-t$.

Exercise 7

Let X_{t} be a sequence of iid standard normal rvs. What is the distribution of the increments of $Z_{t}=\sqrt{t} X_{t}$? Is Z_{t} a Brownian motion?

Exercise 8

Show that $Z_{t}=-W_{t}$ is a Wiener process, if W_{t} is.

Exercise 9

Let W_{t} and \widetilde{W}_{t} be two independent Brownian motions and ρ is a constant between -1 and 1 . What is the distribution of $Z_{t}=\rho W_{t}+\sqrt{1-\rho^{2}} \widetilde{W}_{t}$? Is Z_{t} a Brownian motion?

