Stochastic Processes in Finance Prof. Olivier Scaillet TA Evgenii Anisimov

HW 5 Martingales

Exercise 1

Let $\{N_t, t \ge 0\}$ be a Poisson process such that, on average, the number of events between 0 and t is equal to λt . Show that the process $M_t = N_t - \lambda t$ is a martingale. Identify the predictable part of N_t .

Exercise 2

Financial markets are influenced by good and bad news. Let N_t^G be the total number of arrivals of good news until time t and N_t^B the total number of arrivals of bad news until time t. N_t^G and N_t^B are independent Poisson processes with parameter λt . Show that the process $M_t = N_t^G - N_t^B$ is a martingale with respect to the filtrations

• $\mathcal{F}_t = \sigma(N_s^G, N_s^B, s \le t),$

•
$$\mathcal{G}_t = \sigma(M_s, s \le t).$$

Exercise 3

Let $\{S_t, t \ge 0\}$ be a stochastic process with $S_0 = 0$ and independent and identically distributed (iid) increments: $S_t - S_s \sim \mathcal{N}(0, \sigma^2(t-s)), \forall t > s$. Are the following processes martingales?

a. $Z_t = S_t^2$ b. $Z_t = S_t^2 - \sigma^2 t$.

Exercise 4

Show that if Z_t is a martingale with respect to filtration \mathcal{F}_t , we have:

$$\forall t: E[Z_t] = k,$$

where k is constant.

Exercise 5

Let Z_1, Z_2, Z_3, \ldots be iid random variables (rvs) such that

$$P[Z_n = 1] = P[Z_n = -1] = \frac{1}{2}, \quad n = 1, 2, \dots$$

Let

$$X_n = \sum_{i=1}^n Z_i, \quad n = 1, 2, \dots,$$

with $X_0 = 0$. The process X_n is a symmetric random walk.

- 1. Show that the filtrations $\mathcal{F}_n = \sigma(X_0, X_1, \dots, X_n)$ and $\mathcal{G}_n = \sigma(Z_0, Z_1, \dots, Z_n)$ contain the same information.
- 2. Show that X_n is a martingale with respect to the filtration \mathcal{F}_n .
- 3. Show that $X_n^2 n$ is a martingale with respect to the filtration \mathcal{G}_n .

Exercise 6

Let W_t be a standard Brownian motion. Are the following processes martingales?

- 1. W_t
- 2. $Z_t = W_t \mu t$
- 3. $Z_t = W_t^2 t$.

Exercise 7

Let X_t be a sequence of iid standard normal rvs. What is the distribution of the increments of $Z_t = \sqrt{t}X_t$? Is Z_t a Brownian motion?

Exercise 8

Show that $Z_t = -W_t$ is a Wiener process, if W_t is.

Exercise 9

Let W_t and \widetilde{W}_t be two independent Brownian motions and ρ is a constant between -1 and 1. What is the distribution of $Z_t = \rho W_t + \sqrt{1 - \rho^2} \widetilde{W}_t$? Is Z_t a Brownian motion?