HW 3

Markov Chains: Applications

Exercice 1

Let $\left\{X_{n}, n \geq 1\right\}$ be a series of independent and identically distributed (iid) random variables (rvs) defined on \mathbb{Z} (the set of integers).

Consider the following processes:

1. $S_{n}=\sum_{k=1}^{n} X_{k}, S_{0}=0$;
2. $Y_{n}=X_{n}+X_{n-1}, Y_{0}=0, X_{0}=0$;
3. $Z_{n}=\sum_{k=0}^{n} S_{k}$.

Are the processes S_{n}, Y_{n}, and Z_{n} Markov Chains?

Exercice 2

Discuss the Random Walk Hypothesis. Is such hypothesis valid in financial markets? If not, discuss empirical facts that lead you to this conclusion.

Exercice 3

Let $Z_{1}, Z_{2}, Z_{3}, \ldots$ be iid rvs, such that:
$P\left[Z_{n}=1\right]=p$ and $P\left[Z_{n}=-1\right]=1-p, \quad n=1,2, \ldots$.
Let

$$
X_{n}=a+\sum_{i=1}^{n} Z_{i}, \quad n=1,2, \ldots
$$

with $X_{0}=a \in \mathbb{N}$.

1. Find the Expectation and the Variance of X_{n}.
2. Let $b>a$ and $P_{b}(a)$ denotes the probability that the process X_{n} reaches value b before it touches 0 . Show that $P_{b}(a)=p P_{b}(a+1)+q P_{b}(a-1)$. Deduce value of $P_{b}(a)$.
3. Show that for any discrete rv $Y>0$, we have:

$$
\mathbb{E}[Y]=\sum_{k=0}^{\infty} P[Y>k]=\sum_{k=1}^{\infty} P[Y \geq k]
$$

4. Let $T=\min \left\{n \mid X_{n}=b\right\}$. Show that the event $\{T \geq n\}$ is in $\sigma\left(Z_{1}, \ldots, Z_{n-1}\right)$ (equivalently, the event is known at time $(n-1)$).
5. Suppose that $\mathbb{E}[T]$ is finite. We have $X_{T}-a=X_{T}-a=\sum_{n} Z_{n} 1_{\{T \geq n\}}$. Using 3 and 4 , show that $b-a=\mathbb{E} Z_{1} \cdot \mathbb{E} T$.
6. If $p \leq 1 / 2$, show that T does not have a finite expectation.

Exercice 4

The price of the stock is 30 CHF today. At maturity, the expected variation is $+10 \%$ for the "high" state, and -8% for the "low" state. The risk-free rate is 3%.

1. Determine the risk-neutral probabilities of the states in the corresponding 1-period binomial model.
2. Using the 1-period binomial model, determine the price of an European call with 29 CHF strike.
3. Find the prices of the option from the previous question in the 2-period and 6 -period models.
4. Consider the 2-period binomial model. Compute the price of a put option with 29 CHF strike.
