HW 2
 Markov Chains

Exercise 1

Show that if P is a stochastic matrix then P^{h} is also a stochastic matrix, $h \in \mathbb{N}^{*}$.

Exercise 2

Determine periodicity of the states for the following Markov chains.
1.

$$
P=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

2.

$$
P=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} & 0
\end{array}\right] .
$$

Exercise 3

Let a Markov chain be defined by the following transition matrix:

$$
P=\left[\begin{array}{cc}
1 & 0 \\
0.5 & 0.5
\end{array}\right]
$$

1. Show that state 1 is recurrent.
2. Show that state 2 is transitory.
3. Compute the mean time of recurrence of state 1 .
4. Show that the states are aperiodic.

Exercise 4

Let a Markov chain be defined by the following transition matrix:

$$
P=\left[\begin{array}{ll}
p_{00} & p_{01} \\
p_{10} & p_{11}
\end{array}\right]
$$

1. Verify that:

$$
\begin{aligned}
& f_{00}(n)=p_{01}\left(p_{11}\right)^{n-2} p_{10}, \quad n \geq 2 \\
& f_{01}(n)=\left(p_{00}\right)^{n-1} p_{01}, \quad n \geq 1 \\
& f_{10}(n)=\left(p_{11}\right)^{n-1} p_{10}, \quad n \geq 1 \\
& f_{11}(n)=p_{10}\left(p_{00}\right)^{n-2} p_{01}, \quad n \geq 2
\end{aligned}
$$

2. Compute f_{00}, f_{11}.
3. Show that the states of the following chains are recurrent.

$$
P=\left[\begin{array}{ll}
0.5 & 0.5 \\
0.5 & 0.5
\end{array}\right], \quad Q=\left[\begin{array}{ll}
0.25 & 0.75 \\
0.25 & 0.75
\end{array}\right], \quad R=\left[\begin{array}{ll}
0.1 & 0.9 \\
0.9 & 0.1
\end{array}\right] .
$$

Exercise 5

The wealth of a gambler is described by a random walk $\left\{S_{t}, t \geq 0\right\}, S_{0}=1$, with absorbing barriers in 0 and 3 (States are numbered from 0 to 3). The probability of winning one franc is denoted by p and the probability of losing one franc is q. The game ends when either $S_{t}=0$ or $S_{t}=3$.

1. Give the transition matrix.
2. Find the probabilities that the gambler wins or loses the game (i.e. that he is absorbed in 0 or 3).
3. Determine the average time for the gambler to go bankrupt.

Exercise 6

Let the stochastic matrix

$$
P=\left[\begin{array}{cccccc}
\frac{1}{3} & 0 & 0 & 0 & \frac{2}{3} & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & \frac{2}{3} & 0 & \frac{1}{3} \\
\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2}
\end{array}\right] .
$$

1. Draw the transition graph.
2. Determine which states are transitory, resp. recurrent.
3. Compute the mean time of recurrence of states 1,4 and 6 .
4. Show that by renumbering the states to group persistent states, resp. transitory states, the matrix P has the form $P=\left[\begin{array}{cc}P_{1,1} & 0 \\ P_{2,1} & P_{2,2}\end{array}\right]$.
5. Let $P_{1,1}=\left[\begin{array}{cc}\frac{1}{3} & \frac{2}{3} \\ 1 & 0\end{array}\right]$. Does the Markov chain associated to $P_{1,1}$ have a stationary distribution?
6. Compute the mean time of recurrence of persistent states of the Markov chain associated to $P_{1,1}$.
